Carcicast: Developing a Carcinogenicity Testing Toolbox

Nicole C. Kleinstreuer, PhD

Deputy Director, NICEATM
PI, Computational Toxicology Group, DIR/BCBB
National Institute of Environmental Health Sciences

29th April, 2019

Converging on Cancer Workshop

- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)
- Division of Intramural Research, Biostatistics and Computational Biology Branch

EPA/NCCT

Amgen

Disclaimer: Thoughts and examples provided herein are my own opinions. Mention of trade names or technologies does not constitute endorsement.

Constructing "CarciCast"*

 Identify assays/biomarkers that map to key characteristics of carcinogens/hallmarks of cancer

- Semi-supervised systematic review
 - Broad keyword search for all relevant scientific literature, abstract screening and tagging

- Applying HTS data
 - Prioritize environmental chemicals based on bioactivity against targets that map to cancer hallmark pathways
 - Construct QSAR models for key characteristics

Expert-driven Approach

- The Key Characteristics of Human Carcinogens
- 1. Is Electrophilic or Can Be Metabolically Activated to Electrophiles
- 2. Is Genotoxic
- 3. Alters DNA repair and Causes Genomic Instability
- 4. Induces Epigenetic Alterations
- 5. Induces Oxidative stress
- 6. Induces Chronic Inflammation
- 7. Is Immunosuppressive
- 8. Modulates Receptor-mediated effects
- 9. Causes Immortalization
- 10. Alters Cell Proliferation, Cell Death or Nutrient Supply

- Understanding the relationship between hallmarks (HM: biology) and key characteristics (KC: chemistry)
- Which are measurable, and in what platforms?
- KC: Chemical properties with associated targeted assays
- HM: Biological properties requiring integrated models

No Clear One-to-one Relationship

Carcinogens induce one or more KC's at one or more points in the process (i.e. initiation/promotion)

Tumors acquire one or more HMs at various points in the carcinogenic process

Converging Effects

Building the CarciCast Toolbox

Key Characteristics of Carcinogens can be used to define a toolbox to assess new/untested chemicals or agents for carcinogenic hazards

Manuscript in preparation – (Fielden et al. 2019) The Key
 Characteristics of Carcinogens: Relationship to the Hallmarks
 of Cancer and Assays and Biomarkers to Measure Them

Challenges

- Lack of well established or "gold standard" assays:
 - Eg. KC 6: Induces chronic inflammation, KC 5: Induces oxidative stress
- How to identify & characterize the most appropriate assays?
 - Endpoints specific and relevant to carcinogenic process?
 - Rationale for concentration/dose selection
- How to integrate results from multiple KC's?
- How to relate in vitro results to realistic in vivo exposures?
- In vivo biomarkers of the KC's in animals/humans needed to understand in vitro-in vivo translation and risk assessment

Measuring the Hallmarks: Complex Systems Models

- Ideal Characteristics:
 - Human-relevant platform
 - -Ability to measure interdependent biological responses
 - Provide insight into tumor "tipping point"
 - Temporal and biological
 - Query impact of dose, frequency, repetition, duration, and multiplicity of exposures
 - Represent genetic differences in susceptibility, resilience, and resistance

3D models: Repurposing Drug Development Platforms

3D human breast tumor models have been bioprinted with defined multi-cellular composition and architecture

BioMAP Oncology Panels Human Primary Cells + Microenvironment

Human Biology Modeled by Oncology Panels

Panel	System			Description
Colorectal Cancer (CRC) Panel	StroHT29		Colorectal Cancer - Stro	The Colorectal Cancer - Stro (StroHT29) system models the host stromal-tumor microenvironment by capturing the complex interactions between tumor cells, the host stromal network, and infiltrating immune cells recruited into the tumor mass.
	VascHT29		Colorectal Cancer - Vasc	The Colorectal Cancer - Vasc (VascHT29) system models host vascular-tumor microenvironment by capturing the complex interactions between tumor cells, the host vascular network, and infiltrating immune cells associated with angiogenesis.
Non-Small Cell Lung Cancer (NSCLC) Panel	StroNSCLC		Lung Cancer - Stro	The Lung Cancer - Stro (StroNSCLC) host-NSCLC tumor microenvironment model system consists of human primary fibroblasts co-cultured with a NSCLC cell line, NCI-H1299, and human peripheral blood mononuclear cells. These conditions model the host stromal-tumor microenvironment by capturing the complex interactions between tumor cells, the host stromal network, and infiltrating immune cells recruited into the tumor mass.
	VascNSCLC		Lung Cancer - Vasc	The Lung Cancer - Vasc (VascNSCLC) host-NSCLC tumor microenvironment model system consists of human primary vascular endothelial cells co-cultured with a NSCLC cell line, NCI-H1299, and human peripheral blood mononuclear cells. These conditions model the host vascular-tumor microenvironment by capturing the complex interactions between tumor cells, the host vascular network, and infiltrating immune cells associated with angiogenesis.

DiscoverX

Transformics Assay

Mascolo et al. 2018, Carcinogenesis

- Combining the cell transformation assay with transcriptomics
- Identify dose- and time-dependent signals, discriminate adaptive from adverse responses

Multiplexed HM-related Endpoints In Vitro

Wilde et al. Arch Tox 2018

Chemical	In vivo TD ₅₀	Species
TCDD	0.000023 mg/kg/day	rat
MNU	0.0927 mg/kg/day	rat
MMS	32 mg/kg/day	mouse
МС	56 mg/kg/day	rat
Acetaldehyde	153 mg/kg/day	rat
DEHP	716 mg/kg/day	rat
H2 O2	7540 mg/kg/day	mouse
NiCl2	Data unavailable	

Transgenic Mouse Models

- STAT1 deficiency is a germline mutation, the emergence of tumors requires secondary mutations and/or other adaptations within the microenvironment.
- Prolonged latency supports the "adaptive oncogenesis" theory: changes in the host microenvironment facilitate the expansion of preexisting mutant populations
- Models the most common category of human breast cancer: age related (post-menopausal) ERa+ luminal carcinoma

Semi-supervised systematic review

- Initial search strategy:
 Work with NTP Report on Carcinogens and Office of Health
 Assessment and Translation to identify keywords
 - 256 keywords mapped to HM of Cancer and KC of Carcinogens
 - 7 keywords for assays/biomarker, crossed with HM of Cancer and KC of Carcinogens
- Recruit participants to screen and tag abstracts
 - Metadata: KC, HM, Organism, Publication type, Study type
 - Mesh terms automatically tracked for PubMed articles

Initial corpus

- PubMed + Scopus database
- Literature from last 10 years

TOTAL:

- 32,605 PubMed
- 35,171 Scopus

PubMed publications: KC coverage

Without replicates: **57,036 publications**

https://sysrev.com/

Sysrev: Semi-automated review platform

- Freely available website
- Abstract screening and annotating
- Intuitive user interface
- Including mobile/tablet access
- Uses machine learning to rank the corpus

Register

https://sysrev.com/register

Project name

Hallmark and key characteristics mapping

Project link

https://sysrev.com/p/3588

Machine Learning: Inclusion/Exclusion Models

Neural network model produces a predicted score for each article (0 not relevant, 1 relevant)

Borrel et al. Poster

Applying HTS data

- We observe that some chemicals perturb multiple cancer hallmark pathways
- Hypothesis: A chemical that perturbs many pathways related to cancer hallmark processes will be more likely to cause cancer in the lifetime of an animal than a chemical that perturbs few such pathways

Tox21

Number of Chemicals (Chemical Diversity)

Initial Approach

- Link Tox21/Toxcast assays with genes, pathways, cancer hallmarks
 - Use published pathways and Gene Ontology keywords
- Calculate univariate associations
 - In vitro assay x in vivo cancer endpoints, odds-ratio (OR)
 - Multiple testing corrections with permutation tests
 - Keep associations with OR>2, Lower Confidence Interval > 1
- Rank chemicals by number of hits
- Forward validate with 60 chemicals not in signature development set

Current Approach: Biologically-based Bayesian Networks

 Bayesian Networks provide a probabilistic means to predict an outcome based on measured values

 Can this approach be used to predict chemical carcinogenicity potential from hallmark-related in vitro and in silico assays?

Hallmark/Gene/Assay mapping

 Identify updated (2019) ToxCast/Tox21 assay targets (~350) mapped to hallmark-related genes

Borrel et al. Poster

QSAR models for Key Characteristics

is available at http://dx.doi.org/10.1289/ehp.1509912.

Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis

Martyn T. Smith, 1 Kathryn Z. Guyton, 2 Catherine F. Gibbons, 3 Jason M. Fritz, 3 Christopher J. Portier, 4* Ivan Rusyn,⁵ David M. DeMarini,³ Jane C. Caldwell,³ Robert J. Kavlock,³ Paul F. Lambert,⁶ Stephen S. Hecht,⁷ John R. Bucher,⁸ Bernard W. Stewart,⁹ Robert A. Baan,² Vincent J. Cogliano,³ and Kurt Straif²

Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA; ²International Agency for Research on Car Agency, Washington, DC, USA, and Resea ⁵Department of Veterinary Integrative Bio: College Station, Texas, USA; ⁶McArdle Lal Madison, Wisconsin, USA; 7Masonic Canc Program, National Institute of Environmer Research Triangle Park, North Carolina, U

A Section 508-conformant HTML version of this article

ORIGINAL ARTICLE

Application of the key characteristics of carcinogens in cancer hazard identification

Review

Kathryn Z.Guyton¹, Ivan Rusyn², Weihsueh A.Chiu², Denis E.Corpet³, Martin van den Berg⁴, Matthew K Ross⁵ David C Christiani^{6,7} Frederick A Reland⁸ and Martvn T.Smith9,*

Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups

Weihsueh A. Chiu^{1,*}, Kathryn Z. Guyton², Matthew T. Martin³, David M. Reif⁴, and Ivan Rusyn1,*

 Use KC mapping of HTS assays to identify training set chemicals (active/inactive) for each KC-QSAR model

Ongoing Work

- Include ToxCast assays without specific gene targets (e.g. proliferation, mitochondrial function)
- Refine scoring metrics, investigate tissue-specific endpoints, feature selection algorithms to id minimum assay set, id targets missing from HTS, investigate mis-predicted chemicals
- Incorporate informative priors based on systematic literature review results into BN learning
- Combine with KC-QSARs and low-throughput complex mechanistic assays to form integrated testing strategies
- Ultimate goal: probabilistic chemical (complex mixture) screening for carcinogenicity using battery of in vitro and in silico tests.

Addressing Carcinogenic Risk Probabilistically

QUESTIONS?